Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Journal of Japan Society for Atmospheric Environment ; 57(1):A49-A53, 2022.
Article in Japanese | Ichushi | ID: covidwho-1776970
2.
Environ Int ; 147: 106338, 2021 02.
Article in English | MEDLINE | ID: covidwho-987642

ABSTRACT

We assessed the risk of COVID-19 infection in a healthcare worker (HCW) from multiple pathways of exposure to SARS-CoV-2 in a health-care setting of short distance of 0.6 m between the HCW and a patient while caring, and evaluated the effectiveness of a face mask and a face shield using a model that combined previous infection-risk models. The multiple pathways of exposure included hand contact via contaminated surfaces and an HCW's fingers with droplets, droplet spray, and inhalation of inspirable and respirable particles. We assumed a scenario of medium contact time (MCT) and long contact time (LCT) over 1 day of care by an HCW. SARS-CoV-2 in the particles emitted by coughing, breathing, and vocalization (only in the LCT scenario) by the patient were considered. The contribution of the risk of infection of an HCW by SARS-CoV-2 from each pathway to the sum of the risks from all pathways depended on virus concentration in the saliva of the patient. At a virus concentration in the saliva of 101-105 PFU mL-1 concentration in the MCT scenario and 101-104 PFU mL-1 concentration in the LCT scenario, droplet spraying was the major pathway (60%-86%) of infection, followed by hand contact via contaminated surfaces (9%-32%). At a high virus concentration in the saliva (106-108 PFU mL-1 in the MCT scenario and 105-108 PFU mL-1 in the LCT scenario), hand contact via contaminated surfaces was the main contributor (41%-83%) to infection. The contribution of inhalation of inspirable particles was 4%-10% in all assumed cases. The contribution of inhalation of respirable particles increased as the virus concentration in the saliva increased, and reached 5%-27% at the high saliva concentration (107 and 108 PFU mL-1) in the assumed scenarios using higher dose-response function parameter (0.246) and comparable to other pathways, although these were worst and rare cases. Regarding the effectiveness of nonpharmaceutical interventions, the relative risk (RR) of an overall risk for an HCW with an intervention vs. an HCW without intervention was 0.36-0.37, 0.02-0.03, and <4.0 × 10-4 for a face mask, a face shield, and a face mask plus shield, respectively, in the likely median virus concentration in the saliva (102-104 PFU mL-1), suggesting that personal protective equipment decreased the infection risk by 63%->99.9%. In addition, the RR for a face mask worn by the patient, and a face mask worn by the patient plus increase of air change rate from 2 h-1 to 6 h-1 was <1.0 × 10-4 and <5.0 × 10-5, respectively in the same virus concentration in the saliva. Therefore, by modeling multiple pathways of exposure, the contribution of the infection risk from each pathway and the effectiveness of nonpharmaceutical interventions for COVID-19 were indicated quantitatively, and the importance of the use of a face mask and shield was confirmed.


Subject(s)
COVID-19 , SARS-CoV-2 , Health Personnel , Humans , Personal Protective Equipment , Saliva
3.
Environ Health Prev Med ; 25(1): 66, 2020 Nov 03.
Article in English | MEDLINE | ID: covidwho-901839

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new zoonotic agent that emerged in December 2019, causes coronavirus disease 2019 (COVID-19). This infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. SARS-CoV-2 spreads primarily via respiratory droplets during close person-to-person contact in a closed space, especially a building. This article summarizes the environmental factors involved in SARS-CoV-2 transmission, including a strategy to prevent SARS-CoV-2 transmission in a building environment. SARS-CoV-2 can persist on surfaces of fomites for at least 3 days depending on the conditions. If SARS-CoV-2 is aerosolized intentionally, it is stable for at least several hours. SARS-CoV-2 is inactivated rapidly on surfaces with sunlight. Close-contact aerosol transmission through smaller aerosolized particles is likely to be combined with respiratory droplets and contact transmission in a confined, crowded, and poorly ventilated indoor environment, as suggested by some cluster cases. Although evidence of the effect of aerosol transmission is limited and uncertainty remains, adequate preventive measures to control indoor environmental quality are required, based on a precautionary approach, because COVID-19 has caused serious global damages to public health, community, and the social economy. The expert panel for COVID-19 in Japan has focused on the "3 Cs," namely, "closed spaces with poor ventilation," "crowded spaces with many people," and "close contact." In addition, the Ministry of Health, Labour and Welfare of Japan has been recommending adequate ventilation in all closed spaces in accordance with the existing standards of the Law for Maintenance of Sanitation in Buildings as one of the initial political actions to prevent the spread of COVID-19. However, specific standards for indoor environmental quality control have not been recommended and many scientific uncertainties remain regarding the infection dynamics and mode of SARS-CoV-2 transmission in closed indoor spaces. Further research and evaluation are required regarding the effect and role of indoor environmental quality control, especially ventilation.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Environment, Controlled , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Aerosols , Air Pollution, Indoor/prevention & control , COVID-19 , Crowding , Humans , SARS-CoV-2 , Ventilation
4.
JAPAN ARCHITECTURAL REVIEW ; n/a(n/a), 2020.
Article | WHO COVID | ID: covidwho-724624

ABSTRACT

Information on air-conditioning and ventilation has been continuously disseminated in response to the Japanese Government's announcement of the need for appropriate ventilation measures against the new coronavirus disease (COVID-19), and the issuing of an emergency presidential discourse by the presidents of Engineering Societies. In this paper, we add to the information the latest knowledge on the behavior of SARS-CoV-2 in air, describe its diffusion characteristics in the built environment, and summarize the effects of temperature and humidity on the virus. Then we recommend varying approaches of air-conditioning control for facility type.

5.
Environ Res ; 190: 110042, 2020 11.
Article in English | MEDLINE | ID: covidwho-709486

ABSTRACT

Coronavirus disease 2019 (COVID-19) rapidly spread worldwide in the first quarter of 2020 and resulted in a global crisis. Investigation of the potential association of the spread of the COVID-19 infection with climate or ambient air pollution could lead to the development of preventive strategies for disease control. To examine this association, we conducted a longitudinal cohort study of 28 geographical areas of Japan with documented outbreaks of COVID-19. We analyzed data obtained from March 13 to April 6, 2020, before the Japanese government declared a state of emergency. The results revealed that the epidemic growth of COVID-19 was significantly associated with increase in daily temperature or sunshine hours. This suggests that an increase in person-to-person contact due to increased outing activities on a warm and/or sunny day might promote the transmission of COVID-19. Our results also suggested that short-term exposure to suspended particles might influence respiratory infections caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Further research by well-designed or well-controlled study models is required to ascertain this effect. Our findings suggest that weather has an indirect role in the transmission of COVID-19 and that daily adequate preventive behavior decreases the transmission.


Subject(s)
Activities of Daily Living , Air Pollution , Climate , Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Air Pollution/analysis , Betacoronavirus , COVID-19 , Coronavirus Infections/transmission , Disease Outbreaks , Female , Humans , Japan , Longitudinal Studies , Male , Pneumonia, Viral/transmission , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL